Core
We suggest that you read through this section if you  wish to see how the the library works. To change the model constants (in case you have a different system), see the respective src/{module}/constants/constants.jl  file.
LiionBatteryModels
Modules
LiionBatteryModels.LiionBatteryModels — ModuleLiionBatteryModels core, allows access to the following submodules:
- SenthilModel
 - AshwiniModel
 
Types
Functions
Constants
LiionBatteryModels.SenthilModel
Modules
LiionBatteryModels.SenthilModel — ModuleImplementation of reduced order model for a lithium ion cell with uniform reaction rate approximation.
For model details refer here.
Structs
LiionBatteryModels.SenthilModel.SolidConcentration — TypeVolume averaged solid concentration
Fields
- c₁ₙ: Solid phase concentration in active material spheres in negative electrode.
 - c₁ₚ: Solid phase concentration in active material spheres in positive electrode.
 
LiionBatteryModels.SenthilModel.InterfacialConc — TypeInterfacial electrolyte concentration
Fields
- c₂ᵢₙ: Interfacial electrolyte concentration in negative electrode.
 - c₂ᵢₚ: Interfacial electrolyte concentration in positive electrode.
 
LiionBatteryModels.SenthilModel.InterfacialFlux — TypeInterfacial flux
Fields
- q₂ᵢₙ: Interfacial flux in negative electrode.
 - q₂ᵢₚ: Interfacial flux in positive electrode.
 
LiionBatteryModels.SenthilModel.SolidRadialConcentration — TypeRadially averaged solid concentration
Fields
- c₁ₙᵣ: Solid phase concentration in active material spheres in negative electrode.
 - c₁ₚᵣ: Solid phase concentration in active material spheres in positive electrode.
 
Functions
LiionBatteryModels.SenthilModel.SOCₙ — MethodState of Charge in negative electrode
LiionBatteryModels.SenthilModel.SOCₚ — MethodState of Charge in positive electrode
LiionBatteryModels.SenthilModel.Uₙ — MethodOpen circuit potential in negative electrode
LiionBatteryModels.SenthilModel.Uₚ — MethodOpen circuit potential in positive electrode
LiionBatteryModels.SenthilModel.V — MethodCell voltage across the battery
LiionBatteryModels.SenthilModel.c₂ — MethodOverall electrolyte concentration function
LiionBatteryModels.SenthilModel.c₂̄ₙ — MethodAverage electrolyte concentration in negative electrode
LiionBatteryModels.SenthilModel.c₂̄ₚ — MethodAverage electrolyte concentration in positive electrode
LiionBatteryModels.SenthilModel.c₂̄ₛ — MethodAverage electrolyte concentration in separator
LiionBatteryModels.SenthilModel.c₂ₙ — MethodElectrloyte concentration in negative electrode
LiionBatteryModels.SenthilModel.c₂ₚ — MethodElectrloyte concentration in positive electrode
LiionBatteryModels.SenthilModel.c₂ₛ — MethodElectrloyte concentration in separator
LiionBatteryModels.SenthilModel.cₛₙ — MethodSurface solid phase concentration in negative electrode
LiionBatteryModels.SenthilModel.cₛₚ — MethodSurface solid phase concentration in positive electrode
LiionBatteryModels.SenthilModel.jₙ — MethodLocal surface reaction rate in negative electrode
LiionBatteryModels.SenthilModel.jₙ₀ — MethodOver-potential in negative electrode
LiionBatteryModels.SenthilModel.jₚ — MethodLocal surface reaction rate in positive electrode
LiionBatteryModels.SenthilModel.jₚ₀ — MethodOver-potential in positive electrode
LiionBatteryModels.SenthilModel.k₂ — MethodElectrloyte conductivity
LiionBatteryModels.SenthilModel.k₂ₙ — MethodElectrloyte conductivity in negative electrode
LiionBatteryModels.SenthilModel.k₂ₚ — MethodElectrloyte conductivity in positive electrode
LiionBatteryModels.SenthilModel.k₂ₛ — MethodElectrloyte conductivity in separator
LiionBatteryModels.SenthilModel.rk4 — MethodSimultaneous ODE solver based on the Runge-Kutta 4ᵗʰ order method.
LiionBatteryModels.SenthilModel.ϕ₁ — MethodOverall solid potential function
LiionBatteryModels.SenthilModel.ϕ₁ₙ — MethodSolid potential in negative electrode
LiionBatteryModels.SenthilModel.ϕ₁ₚ — MethodSolid potential in positive electrode
LiionBatteryModels.SenthilModel.ϕ₂ — MethodOverall electrolyte potential function
LiionBatteryModels.SenthilModel.ϕ₂ᵢₙ — MethodInterfacial potential at negative electrode
LiionBatteryModels.SenthilModel.ϕ₂ᵢₚ — MethodInterfacial potential at positive electrode
LiionBatteryModels.SenthilModel.ϕ₂ₙ — MethodElectrloyte potential in negative electrode
LiionBatteryModels.SenthilModel.ϕ₂ₚ — MethodElectrloyte potential in positive electrode
LiionBatteryModels.SenthilModel.ϕ₂ₛ — MethodElectrloyte potential in separator
Constants
LiionBatteryModels.SenthilModel.D₁ₙ — ConstantSolid diffusivity in negative electrode
LiionBatteryModels.SenthilModel.D₁ₚ — ConstantSolid diffusivity in positive electrode
LiionBatteryModels.SenthilModel.D₂ — ConstantElectrolyte diffusivity of material
LiionBatteryModels.SenthilModel.D₂ₙ — ConstantEffective electrolyte diffusivity in the negative electrode
LiionBatteryModels.SenthilModel.D₂ₚ — ConstantEffective electrolyte diffusivity in the positive electrode
LiionBatteryModels.SenthilModel.D₂ₛ — ConstantEffective electrolyte diffusivity in the separator
LiionBatteryModels.SenthilModel.F — ConstantFaraday's constant
LiionBatteryModels.SenthilModel.L — ConstantTotal cell thickness
LiionBatteryModels.SenthilModel.R — ConstantUniversal gas constant
LiionBatteryModels.SenthilModel.T — ConstantSystem Temperature (in K)
LiionBatteryModels.SenthilModel.aₙ — ConstantSpecific surface area of active material in negative electrode
LiionBatteryModels.SenthilModel.aₚ — ConstantSpecific surface area of active material in positive electrode
LiionBatteryModels.SenthilModel.brug — ConstantBruggeman factor
LiionBatteryModels.SenthilModel.c₁ₙ₀ — ConstantInitial solid phase concentrations in negative electrode
LiionBatteryModels.SenthilModel.c₁ₙₘₐₓ — ConstantMaximum solid phase concentrations in negative electrode
LiionBatteryModels.SenthilModel.c₁ₚ₀ — ConstantInitial solid phase concentrations in positive electrode
LiionBatteryModels.SenthilModel.c₁ₚₘₐₓ — ConstantMaximum solid phase concentrations in positive electrode
LiionBatteryModels.SenthilModel.c₂₀ — ConstantInitial electrolyte concentration
LiionBatteryModels.SenthilModel.kₙ — ConstantSurface reaction rate constants in negative electrode
LiionBatteryModels.SenthilModel.kₚ — ConstantSurface reaction rate constants in positive electrode
LiionBatteryModels.SenthilModel.lₙ — ConstantThickness of negative electrode
LiionBatteryModels.SenthilModel.lₚ — ConstantThickness of positive electrode
LiionBatteryModels.SenthilModel.lₛ — ConstantThickness of negative separator
LiionBatteryModels.SenthilModel.rₙ — ConstantRadii of active material spheres in negative electrode
LiionBatteryModels.SenthilModel.rₚ — ConstantRadii of active material sphere in positive electrode
LiionBatteryModels.SenthilModel.t₊ — ConstantElectrloyte transference number
LiionBatteryModels.SenthilModel.αᵢₙ — ConstantParameter constant at separator interface of the negative electrode
LiionBatteryModels.SenthilModel.αᵢₚ — ConstantParameter constant at separator interface of the positive electrode
LiionBatteryModels.SenthilModel.ϵ₁ₙ — ConstantActive material fraction in negative electrode
LiionBatteryModels.SenthilModel.ϵ₁ₚ — ConstantActive material fraction in positive electrode
LiionBatteryModels.SenthilModel.ϵ₁ₛ — ConstantActive material fraction in separator
LiionBatteryModels.SenthilModel.ϵ₂ₙ — ConstantElectrloyte volume fraction in negative electrode
LiionBatteryModels.SenthilModel.ϵ₂ₚ — ConstantElectrloyte volume fraction in positive electrode
LiionBatteryModels.SenthilModel.ϵ₂ₛ — ConstantElectrloyte volume fraction in separator
LiionBatteryModels.AshwiniModel
Modules
LiionBatteryModels.AshwiniModel — ModuleImplementation of a closed form reduced order electrochemical model for Lithium-Ion Cells.
For model details refer here.
Types
Functions
LiionBatteryModels.AshwiniModel.SOCₙ — MethodState of Charge in negative electrode
LiionBatteryModels.AshwiniModel.SOCₚ — MethodState of Charge in positive electrode
LiionBatteryModels.AshwiniModel.Uₙ — MethodOpen circuit potential in negative electrode
LiionBatteryModels.AshwiniModel.Uₚ — MethodOpen circuit potential in positive electrode
LiionBatteryModels.AshwiniModel.V — MethodCell voltage across the battery
LiionBatteryModels.AshwiniModel.c₁ₙ — MethodAverage solid phase concentration in positive electode
LiionBatteryModels.AshwiniModel.c₁ₙᵣ — MethodGradient of average solid phase concentration in positive electode
LiionBatteryModels.AshwiniModel.c₂ — MethodOverall electrolyte concentration function
LiionBatteryModels.AshwiniModel.c₂̄ₙ — MethodAverage electrolyte concentration in negative electrode
LiionBatteryModels.AshwiniModel.c₂̄ₚ — MethodAverage electrolyte concentration in positive electrode
LiionBatteryModels.AshwiniModel.c₂̄ₛ — MethodAverage electrolyte concentration in separator
LiionBatteryModels.AshwiniModel.c₂ᵢₙ — MethodInterfacial electrolyte concentration in negative electrode
LiionBatteryModels.AshwiniModel.c₂ᵢₚ — MethodInterfacial electrolyte concentration in positive electrode
LiionBatteryModels.AshwiniModel.c₂ₘ — MethodElectrolyte concentration in the middle of battery
LiionBatteryModels.AshwiniModel.c₂ₙ — MethodElectrloyte concentration in negative electrode [68]
- Parameters: 
- x: position in -ve electrode.
 - n0: params[1]
 - n2: params[2]
 - n3: params[3]
 
 
LiionBatteryModels.AshwiniModel.c₂ₙ₀ — MethodElectrolyte concentration @ x=0 in negative electrode
LiionBatteryModels.AshwiniModel.c₂ₚ — MethodElectrloyte concentration in positive electrode [69]
- Parameters: 
- x: position in +ve electrode.
 - p0: params[1]
 - p2: params[2]
 - p3: params[3]
 
 
LiionBatteryModels.AshwiniModel.c₂ₚₗ — MethodElectrolyte concentration @ x = L in positive electrode.
LiionBatteryModels.AshwiniModel.c₂ₛ — MethodElectrloyte concentration in separator [70]
- Parameters: 
- x: position in the separator.
 - s0: params[1]
 - s1: params[2]
 - s2: params[3]
 
 
LiionBatteryModels.AshwiniModel.cₛₙ — MethodSurface solid phase concentration in negative electrode
LiionBatteryModels.AshwiniModel.d₂ — MethodElectrolyte diffusivity of material
LiionBatteryModels.AshwiniModel.d₂ₙ — MethodElectrolyte diffusivity in negative electrode
LiionBatteryModels.AshwiniModel.d₂ₚ — MethodElectrolyte diffusivity in positive electrode
LiionBatteryModels.AshwiniModel.d₂ₛ — MethodElectrolyte diffusivity in separator
LiionBatteryModels.AshwiniModel.j̅ₙ — MethodAverage surface reaction rate in negative electrode
LiionBatteryModels.AshwiniModel.j̅ₚ — MethodAverage surface reaction rate in positive electrode
LiionBatteryModels.AshwiniModel.jₙ — MethodLocal surface reaction rate in negative electrode
LiionBatteryModels.AshwiniModel.jₙ₀ — MethodOver-potential in negative electrode
LiionBatteryModels.AshwiniModel.jₚ — MethodLocal surface reaction rate in positive electrode
LiionBatteryModels.AshwiniModel.jₚ₀ — MethodOver-potential in positive electrode
LiionBatteryModels.AshwiniModel.k₂ — MethodElectrloyte conductivity [Ref45 - 25]
LiionBatteryModels.AshwiniModel.k₂ₙ — MethodEffective Electrloyte conductivity in negative electrode
LiionBatteryModels.AshwiniModel.k₂ₚ — MethodElectrloyte conductivity in positive electrode
LiionBatteryModels.AshwiniModel.k₂ₛ — MethodElectrloyte conductivity in separator
LiionBatteryModels.AshwiniModel.param_solver — Methodparam_solver
The key function to get all the parameters required to solve for c₂ at a given timestep in the timeseries.
Returns the 16 parameters: n₀(t), n₁(t), n₂(t), n₃(t), p₀(t), p₁(t), p₂(t), p₃(t), s₀(t), s₁(t), s₂(t), <c₂>ₙ, <c₂>ₚ , <c₂>ₛ, c₂|ₓ₌₀ and c₂|ₓ₌ₗ in this order
Params:
- I: The current at the timestep.
- Δt: The span of the timestep.
- c₂ₙₚ: The previous average concentration in negative electrode
- c₂ₛₚ: The The previous average concentration in separator
- c₂ₚₚ: The previous average concentration in positive electrode
- c₂ₙ₀ₚ: The previous concentration in negative electrode @ x=0
- c₂ₚₗₚ: The previous average concentration in positive electrode @x=L
- jn_0: The reaction rate @x=0
- jp_l: The reaction rate @x=LLiionBatteryModels.AshwiniModel.ϕ₁ — MethodOverall solid potential function
LiionBatteryModels.AshwiniModel.ϕ₁ₙ — MethodSolid potential in negative electrode
LiionBatteryModels.AshwiniModel.ϕ₁ₚ — MethodSolid potential in positive electrode
LiionBatteryModels.AshwiniModel.ϕ₂ — MethodOverall electrolyte potential function
LiionBatteryModels.AshwiniModel.ϕ₂ᵢₙ — MethodInterfacial potential at negative electrode
LiionBatteryModels.AshwiniModel.ϕ₂ᵢₚ — MethodInterfacial potential at positive electrode
LiionBatteryModels.AshwiniModel.ϕ₂ₙ — MethodElectrolyte potential in negative electrode
LiionBatteryModels.AshwiniModel.ϕ₂ₚ — MethodElectrolyte potential in positive electrode
LiionBatteryModels.AshwiniModel.ϕ₂ₛ — MethodElectrolyte potential in separator
Constants
LiionBatteryModels.AshwiniModel.D₁ₙ — ConstantSolid diffusivity in negative electrode
LiionBatteryModels.AshwiniModel.D₁ₚ — ConstantSolid diffusivity in positive electrode
LiionBatteryModels.AshwiniModel.F — ConstantFaraday's constant
LiionBatteryModels.AshwiniModel.L — ConstantTotal cell thickness
LiionBatteryModels.AshwiniModel.R — ConstantUniversal gas constant
LiionBatteryModels.AshwiniModel.T — ConstantSystem Temperature (in K)
LiionBatteryModels.AshwiniModel.aₙ — ConstantSpecific surface area of active material in negative electrode
LiionBatteryModels.AshwiniModel.aₚ — ConstantSpecific surface area of active material in positive electrode
LiionBatteryModels.AshwiniModel.brugₙ — ConstantBruggeman factor in negative electrode
LiionBatteryModels.AshwiniModel.brugₚ — ConstantBruggeman factor in positive electrode
LiionBatteryModels.AshwiniModel.brugₛ — ConstantBruggeman factor in separator
LiionBatteryModels.AshwiniModel.c₁ₙ₀ — ConstantInitial solid phase concentrations in negative electrode
LiionBatteryModels.AshwiniModel.c₁ₙₘₐₓ — ConstantMaximum solid phase concentrations in negative electrode
LiionBatteryModels.AshwiniModel.c₁ₚ₀ — ConstantInitial solid phase concentrations in positive electrode
LiionBatteryModels.AshwiniModel.c₁ₚₘₐₓ — ConstantMaximum solid phase concentrations in positive electrode
LiionBatteryModels.AshwiniModel.c₂₀ — ConstantInitial electrolyte concentration
LiionBatteryModels.AshwiniModel.k₁ₙ — ConstantElectronic conductivity in negative electode
LiionBatteryModels.AshwiniModel.k₁ₚ — ConstantElectronic conductivity in positive electode
LiionBatteryModels.AshwiniModel.lₙ — ConstantThickness of negative electrode
LiionBatteryModels.AshwiniModel.lₚ — ConstantThickness of positive electrode
LiionBatteryModels.AshwiniModel.lₛ — ConstantThickness of separator
LiionBatteryModels.AshwiniModel.rₙ — ConstantRadii of active material spheres in negative electrode
LiionBatteryModels.AshwiniModel.rₚ — ConstantRadii of active material spheres in positive electrode
LiionBatteryModels.AshwiniModel.t₊ — ConstantTransferennce number of Li ion species dissolved in liquid
LiionBatteryModels.AshwiniModel.αᵪ — ConstantCathodic transfer coefficient
LiionBatteryModels.AshwiniModel.αₐ — ConstantAnodic transfer coefficient
LiionBatteryModels.AshwiniModel.σ₁ₙ — ConstantEffective electronic conductivity in negative electode
LiionBatteryModels.AshwiniModel.σ₁ₚ — ConstantEffective electronic conductivity in positive electode
LiionBatteryModels.AshwiniModel.ϵ₁ₙ — ConstantActive material fraction in negative electrode
LiionBatteryModels.AshwiniModel.ϵ₁ₚ — ConstantActive material fraction in positive electrode
LiionBatteryModels.AshwiniModel.ϵ₂ₙ — ConstantVolume fraction in negative electrode
LiionBatteryModels.AshwiniModel.ϵ₂ₚ — ConstantVolume fraction in positive electrode
LiionBatteryModels.AshwiniModel.ϵ₂ₛ — ConstantVolume fraction in separator