Core
We suggest that you read through this section if you wish to see how the the library works. To change the model constants (in case you have a different system), see the respective src/{module}/constants/constants.jl
file.
LiionBatteryModels
Modules
LiionBatteryModels.LiionBatteryModels
— ModuleLiionBatteryModels core, allows access to the following submodules:
- SenthilModel
- AshwiniModel
Types
Functions
Constants
LiionBatteryModels.SenthilModel
Modules
LiionBatteryModels.SenthilModel
— ModuleImplementation of reduced order model for a lithium ion cell with uniform reaction rate approximation.
For model details refer here.
Structs
LiionBatteryModels.SenthilModel.SolidConcentration
— TypeVolume averaged solid concentration
Fields
- c₁ₙ: Solid phase concentration in active material spheres in negative electrode.
- c₁ₚ: Solid phase concentration in active material spheres in positive electrode.
LiionBatteryModels.SenthilModel.InterfacialConc
— TypeInterfacial electrolyte concentration
Fields
- c₂ᵢₙ: Interfacial electrolyte concentration in negative electrode.
- c₂ᵢₚ: Interfacial electrolyte concentration in positive electrode.
LiionBatteryModels.SenthilModel.InterfacialFlux
— TypeInterfacial flux
Fields
- q₂ᵢₙ: Interfacial flux in negative electrode.
- q₂ᵢₚ: Interfacial flux in positive electrode.
LiionBatteryModels.SenthilModel.SolidRadialConcentration
— TypeRadially averaged solid concentration
Fields
- c₁ₙᵣ: Solid phase concentration in active material spheres in negative electrode.
- c₁ₚᵣ: Solid phase concentration in active material spheres in positive electrode.
Functions
LiionBatteryModels.SenthilModel.SOCₙ
— MethodState of Charge in negative electrode
LiionBatteryModels.SenthilModel.SOCₚ
— MethodState of Charge in positive electrode
LiionBatteryModels.SenthilModel.Uₙ
— MethodOpen circuit potential in negative electrode
LiionBatteryModels.SenthilModel.Uₚ
— MethodOpen circuit potential in positive electrode
LiionBatteryModels.SenthilModel.V
— MethodCell voltage across the battery
LiionBatteryModels.SenthilModel.c₂
— MethodOverall electrolyte concentration function
LiionBatteryModels.SenthilModel.c₂̄ₙ
— MethodAverage electrolyte concentration in negative electrode
LiionBatteryModels.SenthilModel.c₂̄ₚ
— MethodAverage electrolyte concentration in positive electrode
LiionBatteryModels.SenthilModel.c₂̄ₛ
— MethodAverage electrolyte concentration in separator
LiionBatteryModels.SenthilModel.c₂ₙ
— MethodElectrloyte concentration in negative electrode
LiionBatteryModels.SenthilModel.c₂ₚ
— MethodElectrloyte concentration in positive electrode
LiionBatteryModels.SenthilModel.c₂ₛ
— MethodElectrloyte concentration in separator
LiionBatteryModels.SenthilModel.cₛₙ
— MethodSurface solid phase concentration in negative electrode
LiionBatteryModels.SenthilModel.cₛₚ
— MethodSurface solid phase concentration in positive electrode
LiionBatteryModels.SenthilModel.jₙ
— MethodLocal surface reaction rate in negative electrode
LiionBatteryModels.SenthilModel.jₙ₀
— MethodOver-potential in negative electrode
LiionBatteryModels.SenthilModel.jₚ
— MethodLocal surface reaction rate in positive electrode
LiionBatteryModels.SenthilModel.jₚ₀
— MethodOver-potential in positive electrode
LiionBatteryModels.SenthilModel.k₂
— MethodElectrloyte conductivity
LiionBatteryModels.SenthilModel.k₂ₙ
— MethodElectrloyte conductivity in negative electrode
LiionBatteryModels.SenthilModel.k₂ₚ
— MethodElectrloyte conductivity in positive electrode
LiionBatteryModels.SenthilModel.k₂ₛ
— MethodElectrloyte conductivity in separator
LiionBatteryModels.SenthilModel.rk4
— MethodSimultaneous ODE solver based on the Runge-Kutta 4ᵗʰ order method.
LiionBatteryModels.SenthilModel.ϕ₁
— MethodOverall solid potential function
LiionBatteryModels.SenthilModel.ϕ₁ₙ
— MethodSolid potential in negative electrode
LiionBatteryModels.SenthilModel.ϕ₁ₚ
— MethodSolid potential in positive electrode
LiionBatteryModels.SenthilModel.ϕ₂
— MethodOverall electrolyte potential function
LiionBatteryModels.SenthilModel.ϕ₂ᵢₙ
— MethodInterfacial potential at negative electrode
LiionBatteryModels.SenthilModel.ϕ₂ᵢₚ
— MethodInterfacial potential at positive electrode
LiionBatteryModels.SenthilModel.ϕ₂ₙ
— MethodElectrloyte potential in negative electrode
LiionBatteryModels.SenthilModel.ϕ₂ₚ
— MethodElectrloyte potential in positive electrode
LiionBatteryModels.SenthilModel.ϕ₂ₛ
— MethodElectrloyte potential in separator
Constants
LiionBatteryModels.SenthilModel.D₁ₙ
— ConstantSolid diffusivity in negative electrode
LiionBatteryModels.SenthilModel.D₁ₚ
— ConstantSolid diffusivity in positive electrode
LiionBatteryModels.SenthilModel.D₂
— ConstantElectrolyte diffusivity of material
LiionBatteryModels.SenthilModel.D₂ₙ
— ConstantEffective electrolyte diffusivity in the negative electrode
LiionBatteryModels.SenthilModel.D₂ₚ
— ConstantEffective electrolyte diffusivity in the positive electrode
LiionBatteryModels.SenthilModel.D₂ₛ
— ConstantEffective electrolyte diffusivity in the separator
LiionBatteryModels.SenthilModel.F
— ConstantFaraday's constant
LiionBatteryModels.SenthilModel.L
— ConstantTotal cell thickness
LiionBatteryModels.SenthilModel.R
— ConstantUniversal gas constant
LiionBatteryModels.SenthilModel.T
— ConstantSystem Temperature (in K)
LiionBatteryModels.SenthilModel.aₙ
— ConstantSpecific surface area of active material in negative electrode
LiionBatteryModels.SenthilModel.aₚ
— ConstantSpecific surface area of active material in positive electrode
LiionBatteryModels.SenthilModel.brug
— ConstantBruggeman factor
LiionBatteryModels.SenthilModel.c₁ₙ₀
— ConstantInitial solid phase concentrations in negative electrode
LiionBatteryModels.SenthilModel.c₁ₙₘₐₓ
— ConstantMaximum solid phase concentrations in negative electrode
LiionBatteryModels.SenthilModel.c₁ₚ₀
— ConstantInitial solid phase concentrations in positive electrode
LiionBatteryModels.SenthilModel.c₁ₚₘₐₓ
— ConstantMaximum solid phase concentrations in positive electrode
LiionBatteryModels.SenthilModel.c₂₀
— ConstantInitial electrolyte concentration
LiionBatteryModels.SenthilModel.kₙ
— ConstantSurface reaction rate constants in negative electrode
LiionBatteryModels.SenthilModel.kₚ
— ConstantSurface reaction rate constants in positive electrode
LiionBatteryModels.SenthilModel.lₙ
— ConstantThickness of negative electrode
LiionBatteryModels.SenthilModel.lₚ
— ConstantThickness of positive electrode
LiionBatteryModels.SenthilModel.lₛ
— ConstantThickness of negative separator
LiionBatteryModels.SenthilModel.rₙ
— ConstantRadii of active material spheres in negative electrode
LiionBatteryModels.SenthilModel.rₚ
— ConstantRadii of active material sphere in positive electrode
LiionBatteryModels.SenthilModel.t₊
— ConstantElectrloyte transference number
LiionBatteryModels.SenthilModel.αᵢₙ
— ConstantParameter constant at separator interface of the negative electrode
LiionBatteryModels.SenthilModel.αᵢₚ
— ConstantParameter constant at separator interface of the positive electrode
LiionBatteryModels.SenthilModel.ϵ₁ₙ
— ConstantActive material fraction in negative electrode
LiionBatteryModels.SenthilModel.ϵ₁ₚ
— ConstantActive material fraction in positive electrode
LiionBatteryModels.SenthilModel.ϵ₁ₛ
— ConstantActive material fraction in separator
LiionBatteryModels.SenthilModel.ϵ₂ₙ
— ConstantElectrloyte volume fraction in negative electrode
LiionBatteryModels.SenthilModel.ϵ₂ₚ
— ConstantElectrloyte volume fraction in positive electrode
LiionBatteryModels.SenthilModel.ϵ₂ₛ
— ConstantElectrloyte volume fraction in separator
LiionBatteryModels.AshwiniModel
Modules
LiionBatteryModels.AshwiniModel
— ModuleImplementation of a closed form reduced order electrochemical model for Lithium-Ion Cells.
For model details refer here.
Types
Functions
LiionBatteryModels.AshwiniModel.SOCₙ
— MethodState of Charge in negative electrode
LiionBatteryModels.AshwiniModel.SOCₚ
— MethodState of Charge in positive electrode
LiionBatteryModels.AshwiniModel.Uₙ
— MethodOpen circuit potential in negative electrode
LiionBatteryModels.AshwiniModel.Uₚ
— MethodOpen circuit potential in positive electrode
LiionBatteryModels.AshwiniModel.V
— MethodCell voltage across the battery
LiionBatteryModels.AshwiniModel.c₁ₙ
— MethodAverage solid phase concentration in positive electode
LiionBatteryModels.AshwiniModel.c₁ₙᵣ
— MethodGradient of average solid phase concentration in positive electode
LiionBatteryModels.AshwiniModel.c₂
— MethodOverall electrolyte concentration function
LiionBatteryModels.AshwiniModel.c₂̄ₙ
— MethodAverage electrolyte concentration in negative electrode
LiionBatteryModels.AshwiniModel.c₂̄ₚ
— MethodAverage electrolyte concentration in positive electrode
LiionBatteryModels.AshwiniModel.c₂̄ₛ
— MethodAverage electrolyte concentration in separator
LiionBatteryModels.AshwiniModel.c₂ᵢₙ
— MethodInterfacial electrolyte concentration in negative electrode
LiionBatteryModels.AshwiniModel.c₂ᵢₚ
— MethodInterfacial electrolyte concentration in positive electrode
LiionBatteryModels.AshwiniModel.c₂ₘ
— MethodElectrolyte concentration in the middle of battery
LiionBatteryModels.AshwiniModel.c₂ₙ
— MethodElectrloyte concentration in negative electrode [68]
- Parameters:
- x: position in -ve electrode.
- n0: params[1]
- n2: params[2]
- n3: params[3]
LiionBatteryModels.AshwiniModel.c₂ₙ₀
— MethodElectrolyte concentration @ x=0 in negative electrode
LiionBatteryModels.AshwiniModel.c₂ₚ
— MethodElectrloyte concentration in positive electrode [69]
- Parameters:
- x: position in +ve electrode.
- p0: params[1]
- p2: params[2]
- p3: params[3]
LiionBatteryModels.AshwiniModel.c₂ₚₗ
— MethodElectrolyte concentration @ x = L in positive electrode.
LiionBatteryModels.AshwiniModel.c₂ₛ
— MethodElectrloyte concentration in separator [70]
- Parameters:
- x: position in the separator.
- s0: params[1]
- s1: params[2]
- s2: params[3]
LiionBatteryModels.AshwiniModel.cₛₙ
— MethodSurface solid phase concentration in negative electrode
LiionBatteryModels.AshwiniModel.d₂
— MethodElectrolyte diffusivity of material
LiionBatteryModels.AshwiniModel.d₂ₙ
— MethodElectrolyte diffusivity in negative electrode
LiionBatteryModels.AshwiniModel.d₂ₚ
— MethodElectrolyte diffusivity in positive electrode
LiionBatteryModels.AshwiniModel.d₂ₛ
— MethodElectrolyte diffusivity in separator
LiionBatteryModels.AshwiniModel.j̅ₙ
— MethodAverage surface reaction rate in negative electrode
LiionBatteryModels.AshwiniModel.j̅ₚ
— MethodAverage surface reaction rate in positive electrode
LiionBatteryModels.AshwiniModel.jₙ
— MethodLocal surface reaction rate in negative electrode
LiionBatteryModels.AshwiniModel.jₙ₀
— MethodOver-potential in negative electrode
LiionBatteryModels.AshwiniModel.jₚ
— MethodLocal surface reaction rate in positive electrode
LiionBatteryModels.AshwiniModel.jₚ₀
— MethodOver-potential in positive electrode
LiionBatteryModels.AshwiniModel.k₂
— MethodElectrloyte conductivity [Ref45 - 25]
LiionBatteryModels.AshwiniModel.k₂ₙ
— MethodEffective Electrloyte conductivity in negative electrode
LiionBatteryModels.AshwiniModel.k₂ₚ
— MethodElectrloyte conductivity in positive electrode
LiionBatteryModels.AshwiniModel.k₂ₛ
— MethodElectrloyte conductivity in separator
LiionBatteryModels.AshwiniModel.param_solver
— Methodparam_solver
The key function to get all the parameters required to solve for c₂ at a given timestep in the timeseries.
Returns the 16 parameters: n₀(t), n₁(t), n₂(t), n₃(t), p₀(t), p₁(t), p₂(t), p₃(t), s₀(t), s₁(t), s₂(t), <c₂>ₙ, <c₂>ₚ , <c₂>ₛ, c₂|ₓ₌₀ and c₂|ₓ₌ₗ in this order
Params:
- I: The current at the timestep.
- Δt: The span of the timestep.
- c₂ₙₚ: The previous average concentration in negative electrode
- c₂ₛₚ: The The previous average concentration in separator
- c₂ₚₚ: The previous average concentration in positive electrode
- c₂ₙ₀ₚ: The previous concentration in negative electrode @ x=0
- c₂ₚₗₚ: The previous average concentration in positive electrode @x=L
- jn_0: The reaction rate @x=0
- jp_l: The reaction rate @x=L
LiionBatteryModels.AshwiniModel.ϕ₁
— MethodOverall solid potential function
LiionBatteryModels.AshwiniModel.ϕ₁ₙ
— MethodSolid potential in negative electrode
LiionBatteryModels.AshwiniModel.ϕ₁ₚ
— MethodSolid potential in positive electrode
LiionBatteryModels.AshwiniModel.ϕ₂
— MethodOverall electrolyte potential function
LiionBatteryModels.AshwiniModel.ϕ₂ᵢₙ
— MethodInterfacial potential at negative electrode
LiionBatteryModels.AshwiniModel.ϕ₂ᵢₚ
— MethodInterfacial potential at positive electrode
LiionBatteryModels.AshwiniModel.ϕ₂ₙ
— MethodElectrolyte potential in negative electrode
LiionBatteryModels.AshwiniModel.ϕ₂ₚ
— MethodElectrolyte potential in positive electrode
LiionBatteryModels.AshwiniModel.ϕ₂ₛ
— MethodElectrolyte potential in separator
Constants
LiionBatteryModels.AshwiniModel.D₁ₙ
— ConstantSolid diffusivity in negative electrode
LiionBatteryModels.AshwiniModel.D₁ₚ
— ConstantSolid diffusivity in positive electrode
LiionBatteryModels.AshwiniModel.F
— ConstantFaraday's constant
LiionBatteryModels.AshwiniModel.L
— ConstantTotal cell thickness
LiionBatteryModels.AshwiniModel.R
— ConstantUniversal gas constant
LiionBatteryModels.AshwiniModel.T
— ConstantSystem Temperature (in K)
LiionBatteryModels.AshwiniModel.aₙ
— ConstantSpecific surface area of active material in negative electrode
LiionBatteryModels.AshwiniModel.aₚ
— ConstantSpecific surface area of active material in positive electrode
LiionBatteryModels.AshwiniModel.brugₙ
— ConstantBruggeman factor in negative electrode
LiionBatteryModels.AshwiniModel.brugₚ
— ConstantBruggeman factor in positive electrode
LiionBatteryModels.AshwiniModel.brugₛ
— ConstantBruggeman factor in separator
LiionBatteryModels.AshwiniModel.c₁ₙ₀
— ConstantInitial solid phase concentrations in negative electrode
LiionBatteryModels.AshwiniModel.c₁ₙₘₐₓ
— ConstantMaximum solid phase concentrations in negative electrode
LiionBatteryModels.AshwiniModel.c₁ₚ₀
— ConstantInitial solid phase concentrations in positive electrode
LiionBatteryModels.AshwiniModel.c₁ₚₘₐₓ
— ConstantMaximum solid phase concentrations in positive electrode
LiionBatteryModels.AshwiniModel.c₂₀
— ConstantInitial electrolyte concentration
LiionBatteryModels.AshwiniModel.k₁ₙ
— ConstantElectronic conductivity in negative electode
LiionBatteryModels.AshwiniModel.k₁ₚ
— ConstantElectronic conductivity in positive electode
LiionBatteryModels.AshwiniModel.lₙ
— ConstantThickness of negative electrode
LiionBatteryModels.AshwiniModel.lₚ
— ConstantThickness of positive electrode
LiionBatteryModels.AshwiniModel.lₛ
— ConstantThickness of separator
LiionBatteryModels.AshwiniModel.rₙ
— ConstantRadii of active material spheres in negative electrode
LiionBatteryModels.AshwiniModel.rₚ
— ConstantRadii of active material spheres in positive electrode
LiionBatteryModels.AshwiniModel.t₊
— ConstantTransferennce number of Li ion species dissolved in liquid
LiionBatteryModels.AshwiniModel.αᵪ
— ConstantCathodic transfer coefficient
LiionBatteryModels.AshwiniModel.αₐ
— ConstantAnodic transfer coefficient
LiionBatteryModels.AshwiniModel.σ₁ₙ
— ConstantEffective electronic conductivity in negative electode
LiionBatteryModels.AshwiniModel.σ₁ₚ
— ConstantEffective electronic conductivity in positive electode
LiionBatteryModels.AshwiniModel.ϵ₁ₙ
— ConstantActive material fraction in negative electrode
LiionBatteryModels.AshwiniModel.ϵ₁ₚ
— ConstantActive material fraction in positive electrode
LiionBatteryModels.AshwiniModel.ϵ₂ₙ
— ConstantVolume fraction in negative electrode
LiionBatteryModels.AshwiniModel.ϵ₂ₚ
— ConstantVolume fraction in positive electrode
LiionBatteryModels.AshwiniModel.ϵ₂ₛ
— ConstantVolume fraction in separator